D

(Printed Pages 4)

(20221)

BCA.-V Sem.

18024

B.C.A. Examination, Dec. 2020 Numerical Methods (BCA-504)

Time: Three Hours /

Maximum Marks: 75

Note: Attempt questions from all Sections as per jostructions. Calculator is allowed.

Section-A

(Very Short Answer Questions)

Note: Answer all the **five** questions. Each question carries **3** marks. $3 \times 5 = 15$

Find the real root of the equation:

$$f(x) = x^3 - x - 1 = 0$$

Define operators E, △ and ▽. Also obtain relation between E and △.
 P.T.O.

3. Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with y=1 for x=0. Find y(0.3) by Euler's method taking h=0.1.

 Define Simpson's three-eight rule for Numerical integration.

5. What do you understand by Gauss's eliminations method?

Section-B

(Short Answer Questions)

Note: Attempt any two questions out of the following three questions. Each question carries 71/2 marks.

$$7\frac{1}{2} \times 2 = 15$$

- 6. Use Picard's method to approximate y when x=0.2, given that y=1 when x=0 and $\frac{dy}{dx} = x-y$.
- 7. Find the value of y when x=10 for the following table:

18024/2

×	5	6	9	11
У	12	13	14	16

8. Using Bessel's formula, find y (25) from

the following data:

×	20	24	28	32
У	24	32	35	40

Section-C

(Detailed Answer Questions

Note: Attempt any three questions out of the following five questions. Each question carries 15 marks. 15×3=45

Apply Gauss-Seidal iteration method to solve the equations.

$$20x+y-2z=17$$

$$3x + 20y - z = -18$$

$$2x-3y+20z=25$$

 Use Runge-Kutta method of fourth order, to find y (0.2) for the equation.

$$\frac{dy}{dx} = \frac{y - x}{y + x}$$
 y(0)=1, take h=0.2

18024/3

P.T.O.

- 11. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using.
 - (a) Trapezoidal rule
 - (b) Simpson's 1/4 rule.
- 12. By using Newton-Raphson's method, find the root of x⁴-x-10=0 which is nearer to x=2 correct to three places of decimal. Also obtain the rate of Convergance of Newton-Raphson's method.
- 13. (a) The following value of the function f(x) for values of x are given: f(1)=4, f(2)=5, f(7)=5, f(8)=4.
 Find the value of f(6) and also the value of x for which f(x) is maximum or minimum.
 - (b) Apply Lagrange's formula to find the cubic polynomial which includes the following values of x and y:

×	0	1	4	6
\mathbf{y}_{x}	1	-1	1	-1

18024/4